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1.1 Introduction

The accurate estimation of the orientation of a rigid body, relative to an iner-
tial frame, is required for a wide range of applications. The recent development
of low-cost and light-weight Micro Electro Mechanical Systems (MEMS) al-
lowed the design of small and cheap Inertial Measurement Units (IMUs). They
have had a successful impact both in several research areas and in consumer
electronics. Widespread daily-life applications are mainly human-machine in-
terfaces in smartphones and game consoles. Typical applications where inertial
sensors are exploited in the professional service are real-time motion capture
systems to track the location and the body posture of people [21, 27], gait
analysis for rehabilitation purposes and biomedical applications as well as for
performance assessment of the aging population [3, 26]. The use of inertial
sensor-based systems is growing even in advanced robotic applications, e.g.,
localization and wheel slip estimation of a skid steered mobile robot [10],
position and attitude determination for Micro Aerial Vehicles (MAVs) [24],

1
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Unmanned Airborne Vehicles (UAVs) [11, 20] and Unmanned Underwater
Vehicles (UUVs) [12].

1.1.1 The inertial measurement unit

An IMU provides real-time measurements of a tri-axial gyroscope and a tri-
axial accelerometer, which can be employed for estimation of the orientation
of a rigid body the IMU is attached to. These devices are based on MEMS
technology and the gyroscope has some form of oscillating mass that, when
the device changes orientation, is subject to a Coriolis force, orthogonal to
the vibration direction and balanced by the elastic force causing the vibra-
tion itself. By measuring such force through a tri-axial capacitive displace-
ment sensor, it is possible to indirectly measure the three components of the
angular velocity during the rotation. The accelerometer observes the IMU’s
proper acceleration by measuring the weight experienced by a test mass elas-
tically suspended again through a capacitive displacement sensor. When the
accelerometer is placed in a gravitational field, and is not subjected to ex-
ternal non-gravitational accelerations, it measures the elastic force balancing
the weight, and thus, it provides both the magnitude and direction of the
gravitational acceleration.

The signal output of low-cost IMU systems, however, is characterized by
low-resolution signals subject to high noise levels as well as general time-
varying bias terms. Therefore, raw signals must be processed to reconstruct
smoothed attitude estimates and bias-corrected angular velocity measure-
ments through suitable sensor fusion algorithms. In fact, suitable exploitation
of acceleration measurements can avoid drift caused by numerical integration
of gyroscopic measurements. However, it is well-known that the use of only
these two source of information cannot correct the drift of the estimated head-
ing, thus an additional sensor is needed, i.e., a tri-axial magnetometer, which
allows to obtain a correct heading estimation. In this case, the inertial unit is
usually referred to as MARG (Magnetic Angular Rate and Gravity).

As said, in order to better estimate the orientation of a rigid body, an-
gular velocity, linear acceleration and magnetic field data are fused together.
Although many approaches have been adopted for filtering gyroscope data
with inertial measurements, the most commonly used techniques are Extended
Kalman filtering (EKF) and Complementary Filters. The methods based on
the Kalman filter adopt a probabilistic determination of the state modeled
as a Gaussian distribution given the system model [1, 2, 13]. The Comple-
mentary Filter is a valid alternative to the EKF-based methods given its
simplicity and effectiveness. It uses a frequency domain analysis to filter the
signals and combine them together to obtain an estimation of the orienta-
tion without any statistical description. Often, in robotic applications, e.g.,
UAVs, UUVs and MAVs control, the complementary filter is preferred to the
EKF. This choice is justified by the higher computation time of the EKF-
based algorithms due to its higher complexity. Most of the recent sensor fu-
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sion algorithms for inertial/magnetic sensors provide orientation estimation
in quaternion1 form [16, 23]. Many other non linear estimation methods have
been presented in the literature and the two proposed in [15] and [14] have
attracted great interest in the robotics community. In particular, [15] formu-
late the filtering problem as a deterministic observer posed on the Special
Orthogonal group SO(3) termed ‘explicit complementary filter’. In [14] the
authors present a computationally efficient orientation algorithm based on
optimized gradient descent algorithm designed to support a wearable inertial
human motion tracking system for rehabilitation applications.

The contribution of this work is to carry out a comparison of the most
popular attitude and heading estimation (AHRS) algorithms and an exper-
imental validation using a robotic manipulator in order to define a reliable
ground truth. In particular, the standard EKF framework and the methods
proposed by [15] and by [14] have been considered worthy of particular inter-
est. Although most of the papers in the literature propose modified versions of
the EKF, e.g.[12], [7] and [25], the authors consider the standard EKF frame-
work still a valid option. The main reasons are its generality and flexibility. In
fact, this framework is particularly suitable to add and remove sensors with-
out significantly changing the estimation algorithm, to take into account the
different reliability and accuracy of sensors on the basis of their statistical
characteristics, and to easily exploit all the a priori knowledge on the involved
signals.

1.2 Sensor modeling and out-factory calibration

Low-cost sensors have much lower performance characteristics than high-end
sensors for sophisticated applications. Therefore, an accurate calibration of
such sensors is very important for the compensation of their systematic errors,
i.e., bias and scale factors. Usually, accurate values of such parameters are
not available from the manufacturer or they depend on the actual mounting
of the MEMS components, which limits the use of these sensors for those
applications that require high accuracy, such as human-machine interfaces,
biomedical research and aerial robotics. To obtain a satisfactory performance,
it is necessary to use a proper calibration method that could be performed in
the background (self-calibration) or off-line by the system.

Three-axis accelerometers and three-axis magnetometers supplied for the
consumer market are typically calibrated by the sensor manufacturer using a
six-element linear model comprising a gain and offset in each of the three axes.
This factory calibration can change as a result of the thermal stresses during

1Quaternions are a useful mathematical tool that require less computation time because

of their minimal number of parameters and do not result in singularity configurations as

the Euler representation does.
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soldering of the accelerometer/magnetometer to the circuit board. Additional
small errors, including rotation of the IC package relative to the circuit board
and misalignment of the circuit board to the final product, can be introduced
during the soldering and final assembly process. The original factory calibra-
tion will still be adequate for the vast majority of applications, however for
professional applications this is not the case. In addition, the magnetometer
behaviour can be influenced by the presence of hard-iron and soft-iron dis-
tortions that cannot be foreseen by the manufactures but are strictly related
to the application. Hard-iron interference is normally generated by ferromag-
netic materials with permanent magnetic fields that are part of the hand-held
device structure. These materials could be permanent magnets or magnetized
iron or steel. They are time invariant and their effect is to bias the magnetic
sensor outputs. A soft-iron interference magnetic field is generated by the
items inside the hand-held device. They could be the electric traces on the
PCB or other magnetically soft materials.

1.2.1 Accelerometer/Magnetometer calibration

Calibration of accelerometers and magnetometers can be reduced to 3D-
ellipsoid fitting problems [9], [5]. In the proposed calibration algorithm a
six-parameter error model has been considered [19]. Denoting with yf =

[yf1 yf2 yf3]
T a generic sensor output, a re-calibration procedure can be ap-

plied to compute the same six calibration parameters as the original factory
calibration (a scale factor and an offset for each channel) but then applied on
top of the factory calibrated output yf . The 3D fitting problem requires a set
of measurements that should cover as much as possible the 3D space and, for
the accelerometer calibration, it is necessary to carry out the measurements
in a quasi-static condition to avoid accelerations other than the gravity. The
re-calibrated sensor output ŷs, expressed in the sensor frame Σs, become

ŷ
s = Λ

(

ys
f − bs

)

= Λys
f −Λbs (1.1)

where Λ = diag{λ1, λ2, λ3} > 0 and bs = [b1 b2 b3]
T are the scale factors and

offsets, respectively.
Objective of the calibration is to compute Λ and b such that the ellipsoid

becomes a unit sphere centered in the origin, i.e.,

1 = ŷ
sT
ŷ
s = ysT

f Λ2ys
f + bs

TΛ2bs − 2ysT

f Λ2bs (1.2)

By introducing the following intermediate variables2

d = 1− bs
TΛ2bs (1.3)

Λ̄ = (1/d)Λ2 = diag{λ̄1, λ̄2, λ̄3} (1.4)

c = (1/d)Λ2bs = Λ̄bs, (1.5)

2Note that d = 0 can always be avoided by artificially translating the data.
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IMU sensor

FIGURE 1.1
Experimental setup.

Eq. (1.2) can be written as

1 =
[

y2f1 y2f2 y2f3 − 2yf1 − 2yf2 − 2yf3
]









λ̄1

λ̄2

λ̄3

c









, (1.6)

which can be easily solved by writing it for the entire measurement set as
a linear system, by using a least square algorithm. The bias term bs can be
immediately computed from (1.5), while Λ2 can be computed by solving the
linear system obtained substituting Eq. (1.3) into (1.4).

1.3 Experimental setup

The experimental setup is constituted by a KUKA robot and by
a STM32F3Discovery board. The evaluation board is based on the
STM32F303VCT6 ARM-Cortex M4 microcontroller, a ST L3GD20 3-axis dig-
ital output gyroscope, a ST LSM303DLHC MEMS system-in-package featur-
ing a 3D digital linear acceleration sensor and a 3D digital magnetic sensor. In
order to mechanically align the sensor frame to the robot end-effector frame
and in order to avoid undesired rotations, the evaluation board is fixed to
the robot gripper using a calibrated mechanical part. Figure 1.1 shows the
experimental setup.
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ŷ
s
1
, y

s
f1

ŷ
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FIGURE 1.2
Calibration error of the accelerometer (left) and magnetometer (right) before
and after re-calibration.

1.3.1 IMU

The considered IMU is constituted by ST MEMS motion sensors directly
mounted on the STM32F3Discovery evaluation board. The ST L3GD20 3-
axis gyroscope offers an I2C/SPI digital output interface, 16 bit value data
output and three selectable ranges (±250, ±500, ±2000 dps) while the ST
LSM303DLHC offers a 3-axis magnetometer with a full-scale from ±1.3 to
±8.1 Gauss and a 3-axis accelerometer with ±2 g/±4 g/±8 g/±16 g selectable
range, 16 bit data output and a I2C serial interface. The experiments have
been carried out by setting an acquisition rate of 760Hz, 1344Hz, 220Hz
and a full-scale range of ±2000 dps, ±2 g, ±1.3Gauss for the gyroscope, the
accelerometer and the magnetometer, respectively.

In order to improve the estimation accuracy, the calibration algorithm
presented in Section 1.2 has been applied to both the magnetometer and the
accelerometer of the adopted IMU and the results are reported in Fig. 1.2,
where it is evident how the re-calibration allows to obtain a more spherical
distribution of the samples.. In fact, after the re-calibration the standard de-
viation of ‖ŷs‖ is 2.8% for the magnetometer and 3.1% for the accelerometer,
compared to the standard deviations of ‖ỹs

f‖ = ‖ys
f‖/ȳ

s
f that are 17.9% and

5.2%, respectively, being ȳs
f the mean value of ys

f .

1.3.2 Robot

The robot used to compute the ground truth for performing the comparison
among the attitude estimation algorithms is a KUKA Youbot [4] constituted
by a 5-dof serial manipulator mounted on an omnidirectional platform. In
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order to obtain a reference attitude with a clear geometrical interpretation,
the first phase of the planned trajectory consists of rotating the three joints
with orthogonal axes of the robot individually, while, in the second phase the
joints are moved in a coordinated fashion so as generate rotations about the
roll, pitch and yaw axes contemporarily. The joint angle values are measured
using the robot encoders with a sampling frequency of 40Hz.

1.4 Attitude estimation algorithms

As explained in Section 1.1, in this work three attitude estimation algorithms
have been compared, one based on a standard EKF formulation and two specif-
ically designed to solve the problem. As opposed to what one would expect
from a specifically designed solution compared to a more general approach,
the performance of the EKF will be demonstrated better in some cases than
the other two methods, at the price of a higher computational burden. Nev-
ertheless, the generality of the approach keeps the “door open” to further
improvements that could come from the adoption of additional sensor (for ex-
ample pressure sensor or GPS) data without the need to completely re-design
the estimation algorithm and especially re-tune the algorithm parameters,
which are based on the statistic characteristics of each signal.

1.4.1 Extended Kalman filter

Differently from the Kalman-based approaches proposed in [17] and [22], where
modifications to the standard Bayesian framework were introduced with dif-
ferent motivations, the AHRS algorithm considered in this chapter, proposed
in [6], is based on a standard EKF method. However, the modification pro-
posed by [17] lead to a solution where handling of noise statistics is less trivial
than in the standard EKF formulation, in fact noise rejection is delegated
to a Gauss-Newton iterative algorithm, which is claimed less computational
demanding than the standard EKF, but without a convincing evidence. The
modification proposed by [22] consists in introducing the gyroscopic measure-
ment directly in the state update equation rather than in the measurement
equation, which implies the assumption of low noise affecting the sensor so as
to allow a linearization of the update function. Finally, the recent survey on
nonlinear attitude estimation techniques [8] recognizes that EKF-based ap-
proaches are the most used for two main reasons, their proven reliability and
the ease of incorporation of further measurement sources that can improve
the quality of the estimate or even provide estimate of further quantities,
e.g. altitude and vertical velocity using pressure sensors or GPS, like in [25].
Moreover, the statistical characterization of the sensors required in the EKF
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FIGURE 1.3
EKF algorithm block scheme.

framework allows tuning the algorithm parameters in a more straightforward
fashion.

Figure 1.3 reports a block diagram of the considered EKF algorithm. Let
Σv be the body-fixed frame. The augmented state considered in the EKF
formulation is defined as

xk =

[

Qk

ωv
k

]

, (1.7)

where Qk is the quaternion expressing the estimated orientation and ωv
k is the

angular velocity computed at the k-th step expressed in the body-fixed frame.
Starting from the state vector computed at the k-th step, the orientation at
the next step is computed through the Prediction step and the Kalman gain
computation step using the knowledge on the process noise W and the mea-
surement noise covariance matrix V . Assuming the classical constant velocity
model, the state update equation uses the gyroscope, accelerometer and mag-
netomer measurements to estimate the augmented state at the next step on
the basis of the Kalman gain computed before. The quaternion normalization
is used to prevent numerical issues due to the finite resolution of the numerical
representation.

1.4.2 Madgwick’s algorithm

Madgwick’s algorithm is applicable to IMUs consisting of tri-axis gyroscopes
and accelerometers sensor arrays that also include tri-axis magnetometers
(MARG). The algorithm incorporates magnetic distortion compensation and
it uses a quaternion representation, allowing accelerometer and magnetome-
ter data to be used in an analytically derived and optimised gradient descent
algorithm to compute the direction of the gyroscope measurement error as a
quaternion derivative. Figure 1.4 reports a block diagram of the implemented
filter, while, the equations of the algorithms can be found in [14]. The ori-
entation of the rigid body is computed via two main processes. First, the
gyroscope measurements are elaborated with a correction algorithm, which
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FIGURE 1.4
Madgwick’s algorithm block diagram.

depends on the parameter ζ, in order to minimize the effects due to the bias
and the drift error, and they are used to compute the body orientation with
the quaternion propagation starting from the orientation estimated at the pre-
vious step. Then, accelerometer and magnetometer measurements are fused
with a tunable parameter β through the gradient descent algorithm, which
formulation is reported in [14]. The output of the gradient descent algorithm
is then used to correct the orientation estimated by considering only gyroscope
measurements.

1.4.3 Nonlinear complementary filter

In [15] authors propose the orientation estimation problem as a deterministic
observation problem posed directly on the Special Orthogonal group SO(3).
Through the definition of a Direct Complementary Filter and a Passive Com-
plementary Filter they arrive to a reformulation of the complementary filter,
named Explicit Complementary Filter, in terms of direct vectorial measure-
ments, such as gravitational or magnetic field directions obtained from an
IMU. This observer does not require online algebraic reconstruction of atti-
tude and is ideally suited for implementation on embedded hardware platforms
owing to its low complexity. However, it suffers from possible discontinuities
in the bias correction signal when the equivalent rotation angle of the esti-
mated quaternion approaches ±π rad that could result in systematic errors in
the reconstructed attitude. Fig.1.5 reports a block diagram of the algorithm.
Starting from the knowledge of the body orientation computed at the pre-
vious step of the algorithm, an orientation error is obtained on the basis of
the accelerometer and magnetometer measurements. A correction step based
on a Proportional-Integral (PI) compensator is used to correct the measured
angular velocity. Again, the quaternion propagation is integrated to obtain an
estimate of the orientation, after the usual quaternion normalization.
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FIGURE 1.5
Mahony’s algorithm block diagram.

1.5 Experimental results

The parameters of each of the three algorithms to be compared have been
set as follows. For the EKF, the measurement covariance matrix V has been
estimated by a simple static acquisition of the sensor signals and the resulting
values are

V = diag{2.9 · 10−5, 2.3 · 10−5, 3.2 · 10−5, 3.1 · 10−5,

4.5 · 10−5, 5.5 · 10−5, 2.0 · 10−3, 2.1 · 10−3, 2.0 · 10−3}
,

while the entries of the process covariance matrix have been tuned so as to
obtain a satisfactory response time and a good noise rejection, as well as to
guarantee filter convergence according to the result by [18], i.e.,

W = diag{10−10, 10−10, 10−10, 10−10, 10−3, 10−3, 10−3}.

Note how the first four entries are significantly lower than the others since the
first four state equations in the EKF update step are the kinematic relation
between angular velocity and time derivative of the quaternion, which is exact
except for the numerical integration error.

The sole adjustable parameter of the algorithm recalled in Section 1.4.2 has
been chosen as the optimal value proposed by [14] for the MARG implemen-
tation, i.e., β = 0.041 and ζ = 0.001. The gain parameters of the algorithm
recalled in Section 1.4.3 and implemented using the quaternion representa-
tion, have been chosen as proposed by [15], i.e., kp = 2 and ki = 0.6, which
have been verified to be optimal also in this case.

The three algorithms have been implemented in Matlab/Simulink with a
sampling time Ts = 2ms, since the sensor data have been acquired from the
IMU at sampling frequency of 500Hz, which is the frequency experimentally
found to guarantee the most reliable communication. To compare the three
AHRS algorithms, two robot trajectories are considered. In the first (slow)
trajectory, an average speed of 18 deg/s is applied to robot joints, while, in
the second (fast) trajectory, the average speed is raised to 45 deg/s. By defining
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Σv the body-fixed frame and Σr the robot base frame, the ground truth is
computed using the direct kinematics of the robot and, thus, computing the
end-effector frame orientation (aligned to the body-fixed frame) in terms of
the unit quaternion Qv,r. Let Σb be the base frame to which the orientation to
be estimated is referred to. Thus, the estimated orientation of the body-fixed
frame resulting from the AHRS algorithms Q̂v,b, is compared with the ground
truth Qv,b (computed as Qv,b(0) ∗Qr,v(0) ∗Qv,r(t)) and the orientation error
is calculated as the quaternion

Q̃(t) = Q̂
−1

v,b(t) ∗Qv,b(t).

Figure 1.6 shows the estimated orientation, in quaternion representation, for
both trajectories compared to the ground truth, where the reader can be
observe the good performance of the three algorithms in terms of response
time and noise rejection obtained with the parameters selected as explained
above. The orientation error is then expressed in terms of Euler angles in
Roll-Pitch-Yaw representation and it is reported in Fig. 1.7.

To quantify the algorithms performance, the standard deviation and the
mean value are considered. The results of the experiments show that both in
the slow and fast trajectories, the three algorithms provide comparable results
in terms of accuracy.

TABLE 1.1
Mean and standard deviation of the attitude estimation error.

EKF Madgwick Mahony
Euler Angles [deg] mean std mean std mean std

Roll (slow) -0.62 2.67 -0.61 2.75 -0.85 2.88
Pitch (slow) -0.62 2.46 0.81 1.60 0.06 1.94
Yaw (slow) -0.36 3.04 -1.01 2.23 -0.06 2.85
Roll (fast) 0.03 2.58 -0.33 2.12 -0.19 2.67
Pitch (fast) -0.19 2.75 1.69 2.72 1.13 2.47
Yaw (fast) -0.20 2.88 -2.11 2.94 -1.24 3.16

As a further analysis, a comparison on the computational burden of the
considered algorithms has been carried out. In particular, the algorithms have
been implemented in Matlab/Simulink environment on an Intel I7 quad-core
processor at 1.6GHz and they run at a sample rate of 2ms. The tic-toc Matlab
functions have been used to estimate the execution time of a single cycle that
includes the gyroscope, accelerometer and magnetometer measurement and
the attitude estimation. The flexibility of the EKF can be attributed to the
availability of a tunable parameter for each sensor measurement, which is paid
in terms of a higher execution time. Finally, to validate the proposed results,
the algorithms have been coded for implementation on the STM32F3Discovery
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FIGURE 1.6
Estimated and true attitude and heading: slow trajectory (left) and fast tra-
jectory (right).
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Orientation error: slow trajectory (left) and fast trajectory (right).
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Algorithm Matlab/Simulink [ms] Embedded System [ms]

EKF 0.101 2.69
Madgwick 0.018 0.14
Mahony 0.013 0.12

TABLE 1.2
Computational burden estimation.

evaluation board using Chibi/OS as real-time embedded operating system.
To this aim, the ARM Cortex Microcontroller Software Interface Standard
(CMSIS) DSP library is used to implement the mathematical operations, i.e.,
matrix product and inverse. The sample rate is set to 3ms for the EKF algo-
rithm and to 2ms for the Madgwick’s and Mahony’s algorithms. The Table 1.2
reports the average time required to compute one estimation cycle in both
Matlab/Simulink environment and embedded system implementation, which
refers to the maximum reachable frequency. Even though the execution times
of the two fastest algorithms would allow to use a lower sampling time, this
would lead to a negligible improvement due to the limited update rate of the
magnetometer and gyroscope sensors.

1.6 Conclusions

In this chapter an experimental comparison of popular IMU-based algorithms
for orientation estimation of a rigid body with respect to a reference frame
is presented. In particular, two specifically designed solutions are compared
to a standard EKF algorithm, which results to be similar in performance to
the others, as experimentally demonstrated. However, its generality allows the
user to add further sensory information, i.e., pressure sensing or GPS system,
without the need to completely re-design the estimation filter or to re-tune
the parameters of the algorithm, which are simply based on the statistics of
the noise affecting each measured signal.
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